13,590 research outputs found

    Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates

    Full text link
    We study semiparametric varying-coefficient partially linear models when some linear covariates are not observed, but ancillary variables are available. Semiparametric profile least-square based estimation procedures are developed for parametric and nonparametric components after we calibrate the error-prone covariates. Asymptotic properties of the proposed estimators are established. We also propose the profile least-square based ratio test and Wald test to identify significant parametric and nonparametric components. To improve accuracy of the proposed tests for small or moderate sample sizes, a wild bootstrap version is also proposed to calculate the critical values. Intensive simulation experiments are conducted to illustrate the proposed approaches.Comment: Published in at http://dx.doi.org/10.1214/07-AOS561 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Focused information criterion and model averaging for generalized additive partial linear models

    Full text link
    We study model selection and model averaging in generalized additive partial linear models (GAPLMs). Polynomial spline is used to approximate nonparametric functions. The corresponding estimators of the linear parameters are shown to be asymptotically normal. We then develop a focused information criterion (FIC) and a frequentist model average (FMA) estimator on the basis of the quasi-likelihood principle and examine theoretical properties of the FIC and FMA. The major advantages of the proposed procedures over the existing ones are their computational expediency and theoretical reliability. Simulation experiments have provided evidence of the superiority of the proposed procedures. The approach is further applied to a real-world data example.Comment: Published in at http://dx.doi.org/10.1214/10-AOS832 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Variable selection in semiparametric regression modeling

    Full text link
    In this paper, we are concerned with how to select significant variables in semiparametric modeling. Variable selection for semiparametric regression models consists of two components: model selection for nonparametric components and selection of significant variables for the parametric portion. Thus, semiparametric variable selection is much more challenging than parametric variable selection (e.g., linear and generalized linear models) because traditional variable selection procedures including stepwise regression and the best subset selection now require separate model selection for the nonparametric components for each submodel. This leads to a very heavy computational burden. In this paper, we propose a class of variable selection procedures for semiparametric regression models using nonconcave penalized likelihood. We establish the rate of convergence of the resulting estimate. With proper choices of penalty functions and regularization parameters, we show the asymptotic normality of the resulting estimate and further demonstrate that the proposed procedures perform as well as an oracle procedure. A semiparametric generalized likelihood ratio test is proposed to select significant variables in the nonparametric component. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null distribution follows a chi-square distribution which is independent of the nuisance parameters. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedures.Comment: Published in at http://dx.doi.org/10.1214/009053607000000604 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Estimation of constant and time-varying dynamic parameters of HIV infection in a nonlinear differential equation model

    Full text link
    Modeling viral dynamics in HIV/AIDS studies has resulted in a deep understanding of pathogenesis of HIV infection from which novel antiviral treatment guidance and strategies have been derived. Viral dynamics models based on nonlinear differential equations have been proposed and well developed over the past few decades. However, it is quite challenging to use experimental or clinical data to estimate the unknown parameters (both constant and time-varying parameters) in complex nonlinear differential equation models. Therefore, investigators usually fix some parameter values, from the literature or by experience, to obtain only parameter estimates of interest from clinical or experimental data. However, when such prior information is not available, it is desirable to determine all the parameter estimates from data. In this paper we intend to combine the newly developed approaches, a multi-stage smoothing-based (MSSB) method and the spline-enhanced nonlinear least squares (SNLS) approach, to estimate all HIV viral dynamic parameters in a nonlinear differential equation model. In particular, to the best of our knowledge, this is the first attempt to propose a comparatively thorough procedure, accounting for both efficiency and accuracy, to rigorously estimate all key kinetic parameters in a nonlinear differential equation model of HIV dynamics from clinical data. These parameters include the proliferation rate and death rate of uninfected HIV-targeted cells, the average number of virions produced by an infected cell, and the infection rate which is related to the antiviral treatment effect and is time-varying. To validate the estimation methods, we verified the identifiability of the HIV viral dynamic model and performed simulation studies.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS290 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Penalized variable selection procedure for Cox models with semiparametric relative risk

    Full text link
    We study the Cox models with semiparametric relative risk, which can be partially linear with one nonparametric component, or multiple additive or nonadditive nonparametric components. A penalized partial likelihood procedure is proposed to simultaneously estimate the parameters and select variables for both the parametric and the nonparametric parts. Two penalties are applied sequentially. The first penalty, governing the smoothness of the multivariate nonlinear covariate effect function, provides a smoothing spline ANOVA framework that is exploited to derive an empirical model selection tool for the nonparametric part. The second penalty, either the smoothly-clipped-absolute-deviation (SCAD) penalty or the adaptive LASSO penalty, achieves variable selection in the parametric part. We show that the resulting estimator of the parametric part possesses the oracle property, and that the estimator of the nonparametric part achieves the optimal rate of convergence. The proposed procedures are shown to work well in simulation experiments, and then applied to a real data example on sexually transmitted diseases.Comment: Published in at http://dx.doi.org/10.1214/09-AOS780 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore